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ABSTRACT

Two-dimensional electromagnetic particle-in-cell simulations of whistler tur-
bulence in a magnetized, homogeneous, collisionless plasma of electrons and pro-
tons are carried out. Enhanced magnetic fluctuation spectra are initially imposed
at relatively long wavelengths, and, as in previous such simulations, the tempo-
ral evolution shows a forward cascade of magnetic fluctuation energy to shorter
wavelengths, with more fluctuation energy at a given wavenumber perpendicular
to B, than at the same wavenumber parallel to the background field. The new
result here is that the wavevector anisotropy is very different for each of the three
components of the fluctuating magnetic field. Here || denotes the direction paral-
lel to the background magnetic field B,, | indicates the direction perpendicular
to B, and in the simulation plane, and the symbol | | denotes the direction
perpendicular to both B, and the simulation plane. The anisotropy angle of the
jth magnetic component is defined as

tan? 0, = =k FLI0B;(ky, kL)
BT S K16 B (ky, kL)

Then the simulations show that tan®6g; >> 1, tan?f#p; > 1, and tan?fp, | <

1.

Subject headings: turbulence; electron-positron plasmas; dissipation
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1. Introduction

Single-spacecraft measurements of plasma turbulence in the solar wind yield magnetic

fluctuation spectra at observed frequencies f' < 0.2 Hz that scale as (f') =%/ [Smith et al.,

2006; Podesta et al., 2007]; this is called the ”inertial range.” In the range 0.2 Hz < f' <
0.5 Hz, measurements near 1 AU further show a spectral breakpoint, a distinct change
to spectra that are steeper than those of the inertial range [Leamon et al., 1998; Smith
et al., 2006; Alexandrova et al., 2008]. At higher observed frequencies, magnetic spectra
exhibit steeper power laws, i.e., [0B(f')|? ~ (')~ with 1.8 < «a; < 4.5 [Behannon,
1978; Denskat et al., 1983; Goldstein et al., 1994; Lengyel-Frey et al., 1996; Leamon et
al., 1998; Bale et al., 2005; Smith et al., 2006]. Recent analyses of measurements from
the multi-spacecraft Cluster mission have extended such measurements to f' < 100 Hz,

showing that spectra in this range scale with 2 < ay < 3 [Sahraoui et al., 2009; Kiyani et

al., 2009; Alexandrova et al., 2009].

Although inertial range turbulence corresponds to relatively large fluctuation levels
(|6B|* < B?) where B, denotes an average, uniform background magnetic field, high
frequency turbulence above the spectral breakpoint is relatively weak (|0B|?> << B?). So
this regime may be thought of as an ensemble of weakly interacting fluctuations which
are individually described by linear dispersion theory. In this framework, there are two
competing hypotheses as to the character of the normal modes in this regime. One scenario
is that this turbulence consists of kinetic Alfvén waves which propagate in directions
quasi-perpendicular to B, and at real frequencies w, < €2,, the proton cyclotron frequency.
Both solar wind observations [Leamon et al., 1998; Bale et al., 2005; Sahraoui et al., 2009
and gyrokinetic simulations [Howes et al., 2008a; see also Matthaeus et al., 2008, and
Howes et al., 2008b] of turbulence above the spectral breakpoint have been interpreted as

consisting of such normal modes, although it is unlikely that kinetic Alfvén waves represent
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the full physics of such turbulence in the solar wind [Gary and Smith, 2009; Shaikh and
Zank, 2009; Podesta et al., 2010]. A second hypothesis is that whistler fluctuations at

Q, < w, < Q. (where the latter symbol represents the electron cyclotron frequency)

are the fundamental modes of turbulence above the breakpoint. Such modes are often
observed in the solar wind [Beinroth and Neubauer, 1981; Lengyel-Frey et al., 1996] and
recent particle-in-cell (PIC) simulations have demonstrated that such modes can cascade to
relatively short wavelengths and thereby develop turbulent magnetic spectra with relatively

steep power-law wavenumber dependence [Gary et al., 2008; Saito et al., 2008; Svidzinski et

al., 2009].

In the framework of the second scenario, we here use PIC simulations to extend the
computations of Saito et al. [2008] and to examine further properties of cascading whistler
turbulence. As in that paper, the computations described here utilize a two-dimensional,
fully relativistic, collisionless particle-in-cell electromagnetic simulation code [Buneman,
1993]. Here “two-dimensional” means that the simulation allows variations in two spatial
dimensions, x, the direction parallel to B,, and y, perpendicular to the background
magnetic field. The subscripts x and || are equivalent, as are the subscripts y and L. Note
that, because our simulations are two-dimensional, | denotes a Cartesian, rather than a
cylindrical, coordinate. We futher use the symbol L L to denote the z direction which is

perpendicular to both B, and the simulation plane.

The code calculates the full three-dimensional velocity space response of each proton
and electron superparticle throughout the simulations. The plasma is homogeneous with
periodic boundary conditions. The number of superparticles per cell is 64, the system has
spatial dimensions L, = L, = 102.4c/w, where c/w, is the electron inertial length, the time
step is 0t = 0.05/w,, and the grid spacing is A = 0.10¢/w,. For these parameters, the

fundamental mode of the simulation has wavenumber kc/w, = 0.0613, and short wavelength
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fluctuations are resolved up to the component wavenumber of kjc/w, = 4. The initial
physical dimensionless parameters are m,/m, = 1836, T,/T, = 1.0, 8, = 0.10, and w?/Q? =
5.0, where the symbols are as defined in Gary [1993]. For these parameters, v./c = 0.10, so

that the electron temperature is about 2.5 keV.

We initially impose 42 right-hand polarized whistler waves at ¢ = 0. Initial wavenumbers
are kA, = £0.0613, +0.1227, and £0.184, and k; A, = 0, £0.0613, £0.1227, and £0.184.
The frequencies are derived from the linear dispersion relation for magnetosonic-whistler
fluctuations in a collisionless plasma with the same parameters as shown above. Each wave
has an equal fluctuating magnetic energy at ¢ = 0. Given the initial magnetic fluctuations
0B, the initial 0E, and 0J, satisfy Faraday’s and Ampere’s equations, where the subscript

n” is a mode number from 1 to 42 for the initial fluctuations. The phases of each mode

are chosen randomly.

We define the reduced magnetic fluctuation energy spectra as
6B (ky)|* = ., 0By, k1)|”
and
0B (kL )[* = S, [0B(ky, k1) [*
We further define the fitting parameters o) and o by

0B (k))[* = Ck; ™ j =l L

2. Simulation Results

We have done four simulations in which the only initial parameter which is varied is

2

the initial fluctuation energy eg = S o2 | [6B,(t = 0)[>/B2, where |0B, > = 3. |0B;n|*.

J=z.y,2

The simulations correspond to ez = 0.05, 0.1, 0.2, and 0.5, where the first two runs emulate

the corresponding runs of Saito et al. [2008].
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All of these simulations qualitatively reproduce the results of Saito et al. [2008].
The initial, long-wavelength fluctuations yield a forward cascade in which the energy
is transferred to shorter wavelengths; the cascade leads to fluctuation energy being
preferentially transferred to k.; and, as a result, oy << «. Figure 1 shows that a
becomes smaller as each simulation progresses, and «; becomes smaller with increasing ep.
Thus the longer the simulation is run, and the more strongly the turbulence is driven, the
flatter the spectra become and the more energy is cascaded to short wavelengths. These
results suggest that large-amplitude, late-time simulations yield an asymptotic state which
may provide a basis of comparison against the predictions of various models of whistler
turbulence. For the simulations described here, Figure 1 indicates that this asymptotic

state corresponds to o) < 3.

~

Fig. 4 of Saito et al. [2008] indicates that, at quasi-perpendicular propagation,
|(5B|||2 ~ |5BLL|2 >> |(SBL|2

Figure 2 demonstrates that, even when we sum over all wavenumbers, this relationship

remains approximately valid.

To quantify the anisotropy of whistler turbulence, we follow Shebalin et al. [1983] and
Saito et al. [2008] and define the wavevector anisotropy angle 65 by

S k1 10B(ky, ko) 1)
S k0B (ky, kL)

tan?fp =

Figure 3(a), from Saito et al. [2008], shows tan?fp as a function of time from the simulation
with eg = 0.10. This quantity attains a late-time average value of about 6 (fp ~ 68°),
reflecting the fundamental anisotropy of whistler turbulence favoring quasi-perpendicular

propagation relative to the background magnetic field.

However, Fig. 4 of Saito et al. [2008] shows that, at quasi-perpendicular propagation,

|0B, |?/ B% becomes much smaller than the energy in the other two components of ¢B, and,
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as indicated by Gary and Smith [2009], that § B competes with d B, for quasi-perpendicular

whistler fluctuations. This suggests that we define three more anisotropy angles p;:

Sy k208 (ky, kL)
tan’ g, = ol
O S R10B, Ry, kL)

| 2

;  J=lh Ll (2)

These three quantities are illustrated in Figure 3(b). The very weak in-plane perpendicular
component §B, is anisotropic in the sense of having more energy at quasi-parallel
propagation than at quasi-perpendicular propagation. This is consistent with the condition
V - B = 0, which, when kj = 0, imposes 6B, = 0. The other two magnetic fluctuation
components are anisotropic in the opposite sense: dB, | is moderately anisotropic at late
times with tan?fp ~ 6, whereas the compressive component 0By is strongly anisotropic

with tan?fp ~ 14 at late times, corresponding to 0z ~ 75°.

3. Conclusions

We carried out two-dimensional particle-in-cell simulations of whistler turbulence in
a homogeneous collisionless plasma of electrons and protons with a uniform background
magnetic field B,. We imposed an initial spectrum of relatively long wavelength whistler
fluctuations; as in previous such simulations there is a forward cascade of the fluctuating
magnetic field energy to a shorter wavelength regime of whistler turbulence. The late-time
turbulence is anisotropic with more fluctuation energy at a given wavenumber perpendicular
to B, than at the same wavenumber parallel to the background field. The new result
here is that the wavevector anisotropy is strongest in the compressive component (i.e., the
component of §B parallel to B,); the magnetic field component perpendicular to B, and
out of the simulation plane is moderately anisotropic, and the relatively weak magnetic
component perpendicular to B, is anisotropic in the opposite sense with more energy at
quasi-parallel propagation than at quasi-perpendicular propagation. These results imply

that analytic derivations of scaling relations for the properties of whistler turbulence should
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not only distinguish differences between quasi-parallel and quasi-perpendicular propagation
(i-e., scalings with k; and k), as in Saito et al. [2008] and Narita and Gary [2010], but
should also distinguish the different properties and contributions of the perpendicular and

parallel fluctuating magnetic field components.

The power law characterizing late-time, large-amplitude spectra of whistler turbulence

at quasi-perpendicular propagation is «; < 3, as indicated in Figure 1. This is a steeper

~

power law than is predicted by scaling arguments for anisotropic whistler turbulence; for

example, in a Cartesian coordinate system Equation (18) of Narita and Gary [2010] predicts

6BP 1
B " 3)
0 1

The reason for this discrepancy is not clear. Perhaps the steeper spectra in the
simulations are due to Landau damping of the whistlers. Or perhaps our simulations have
not attained a fully asymptotic state; that is, perhaps a simulation at eg = 1.0 would yield
a still smaller late-time value of o). A third possibility might be the need for modifications
to the Narita and Gary [2010] derivation; for example, if the energy transfer rate €, is
proportional to the fluctuating velocity energy |dv|?, rather than the fluctuating magnetic

energy |dB|?, then the formalism of Narita and Gary [2010] yields

6BP 1
B "R 3)
0 1

which is much closer to the asymptotic result of the simulations.

In these two-dimensional simulations k£, | = 0, so that the turbulence is not gyrotropic,
in contrast to what we would expect in a homogeneous physical system. Nevertheless,
because our computations show both |§B, |* and |§ B, | |* are much less anisotropic functions
of wavenumber than |6BH|2, we expect our primary conclusion, that the compressive
component is much more anisotropic than the components perpendicular to B,, should

remain valid in a fully three-dimensional simulation of homogeneous whistler turbulence.
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Fig. 1.— The perpendicular power law index of the total energy density of the fluctuating

magnetic fields as functions of time in each simulation.

Fig. 2.— Time histories of quantities summed over the cascading wavenumber range (0.3
< |ke/we| < 3.0) for the simulation with eg = 0. (a) Total fluctuating magnetic field energy,
and (b) fluctuating magnetic field component energies with [0B)|>/B2 denoted by the red
line, |§B_ |*/B? denoted by the blue line, and [0B,  |*/B? denoted by the green line.

Fig. 3.— Time histories of quantities summed over the cascading wavenumber range (0.3
< |ke/w,| < 3.0) for the simulation with eg = 0. (a) tan*(fp), and (b) tan®(fp,) (red line),

tan?(fp, ) (blue line), and tan?(fp, ) (green line).
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